Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1866(5): 184320, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583701

RESUMO

Ionic liquids (ILs) have recently gained significant attention in both the scientific community and industry, but there is a limited understanding of the potential risks they might pose to the environment and human health, including their potential to accumulate in organisms. While membrane and storage lipids have been considered as primary sorption phases driving bioaccumulation, in this study we used an in vitro tool known as solid-supported lipid membranes (SSLMs) to investigate the affinity of ILs to membrane lipid - phosphatidylcholine and compare the results with an existing in silico model. Our findings indicate that ILs may have a strong affinity for the lipids that form cell membranes, with the key factor being the length of the cation's side chain. For quaternary ammonium cations, increase in membrane affinity (logMA) was observed from 3.45 ± 0.06 at 10 carbon atoms in chain to 4.79 ± 0.06 at 14 carbon atoms. We also found that the anion can significantly affect the membrane partitioning of the cation, even though the anions themselves tend to have weaker interactions with phospholipids than the cations of ILs. For 1-methyl-3-octylimidazolium cation the presence of tricyanomethanide anion caused increase in logMA to 4.23 ± 0.06. Although some of our data proved to be consistent with predictions made by the COSMOmic model, there are also significant discrepancies. These results suggest that further research is needed to improve our understanding of the mechanisms and structure-activity relationships involved in ILs bioconcentration and to develop more accurate predictive models.

2.
Microbiol Spectr ; 12(3): e0291823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289113

RESUMO

Wastewater is considered a reservoir of antimicrobial resistance genes (ARGs), where the abundant antimicrobial-resistant bacteria and mobile genetic elements facilitate horizontal gene transfer. However, the prevalence and extent of these phenomena in different taxonomic groups that inhabit wastewater are still not fully understood. Here, we determined the presence of ARGs in metagenome-assembled genomes (MAGs) and evaluated the risks of MAG-carrying ARGs in potential human pathogens. The potential of these ARGs to be transmitted horizontally or vertically was also determined. A total of 5,916 MAGs (completeness >50%, contamination <10%) were recovered, covering 68 phyla and 279 genera. MAGs were dereplicated into 1,204 genome operational taxonomic units (gOTUs) as a proxy for species ( average nucleotide identity >0.95). The dominant ARG classes detected were bacitracin, multi-drug, macrolide-lincosamide-streptogramin (MLS), glycopeptide, and aminoglycoside, and 10.26% of them were located on plasmids. The main hosts of ARGs belonged to Escherichia, Klebsiella, Acinetobacter, Gresbergeria, Mycobacterium, and Thauera. Our data showed that 253 MAGs carried virulence factor genes (VFGs) divided into 44 gOTUs, of which 45 MAGs were carriers of ARGs, indicating that potential human pathogens carried ARGs. Alarmingly, the MAG assigned as Escherichia coli contained 159 VFGs, of which 95 were located on chromosomes and 10 on plasmids. In addition to shedding light on the prevalence of ARGs in individual genomes recovered from activated sludge and wastewater, our study demonstrates a workflow that can identify antimicrobial-resistant pathogens in complex microbial communities. IMPORTANCE: Antimicrobial resistance (AMR) threatens the health of humans, animals, and natural ecosystems. In our study, an analysis of 165 metagenomes from wastewater revealed antibiotic-targeted alteration, efflux, and inactivation as the most prevalent AMR mechanisms. We identified several genera correlated with multiple ARGs, including Klebsiella, Escherichia, Acinetobacter, Nitrospira, Ottowia, Pseudomonas, and Thauera, which could have significant implications for AMR transmission. The abundance of bacA, mexL, and aph(3")-I in the genomes calls for their urgent management in wastewater. Our approach could be applied to different ecosystems to assess the risk of potential pathogens containing ARGs. Our findings highlight the importance of managing AMR in wastewater and can help design measures to reduce the transmission and evolution of AMR in these systems.


Assuntos
Microbiota , Águas Residuárias , Animais , Humanos , Esgotos/microbiologia , Antibacterianos/farmacologia , Metagenoma , Genes Bacterianos/genética , Farmacorresistência Bacteriana/genética , Bactérias , Sequências Repetitivas Dispersas
3.
J Hazard Mater ; 460: 132428, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690200

RESUMO

Environmental occurrence and hazardous nature of heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) has the potential to threaten the health of aquatic ecosystems. Here, we investigate the acute toxicity of heterocyclic PAHs (log KOW 3.7-6.9) to aquatic organisms: marine bacteria (Aliivibrio fischeri), freshwater green algae (Raphidocelis subcapitata), and water fleas (Daphnia magna) using passive dosing to maintain stable exposure. The membrane-water partition coefficient (KMW) of the heterocycles was measured to elucidate its relationship with toxicity. Our findings show that the tested heterocycles had little inhibitory effect on A. fischeri, while most compounds were highly toxic to R. subcapitata and D. magna. Toxicity generally increased with increasing KMW values, and nonpolar narcosis was identified as the most likely mode of toxic action of the heterocycles. Comparison of standard protocols with passive dosing emphasizes the importance of maintaining a constant concentration during toxicity testing, as very high losses occurred in standard tests and passive dosing experiments revealed higher toxicities. These results indicate a potentially high risk to aquatic life and call for more in-depth investigation of the (eco)toxic effects of NSO-PAHs.


Assuntos
Clorofíceas , Cladóceros , Hidrocarbonetos Policíclicos Aromáticos , Animais , Ecossistema , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Aliivibrio fischeri
4.
J Hazard Mater ; 460: 132370, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666173

RESUMO

Heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) are of increasing concern and their environmental and human health impacts should be assessed due to their widespread presence and potential persistence in the environment. This study investigated the ultimate and primary biodegradability of ten heterocyclic PAHs, nine of which were found to be non-readily biodegradable. To generate a microbial community capable of degrading such compounds, a bacterial inoculum isolated from the effluent of a wastewater treatment plant (WWTP) was adapted to a mixture of heterocyclic PAHs for one year. Throughout the adaptation process, bacterial samples were collected at different stages to conduct primary biodegradation, ultimate biodegradation, and inoculum toxicity tests. Interestingly, after one year of adaptation, the community developed the ability to mineralize carbazole, but in the same time showed an increasing sensitivity to the toxic effects of benzo[c]carbazole. In two consecutive primary biodegradation experiments, degradation of four heterocycles was observed, while no biodegradation was detected for five compounds in any of the tests. Furthermore, the findings of this work were compared with predictions from in silico models regarding biodegradation timeframe and sorption, and it was found that the models were partially successful in describing these processes. The results of study provide valuable insights into the persistence of a representative group of heterocyclic PAHs in aquatic environments, which contributes to the hazard assessment of this particular class of substances.


Assuntos
Hidrocarbonetos Aromáticos , Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Biodegradação Ambiental , Carbazóis
5.
J Hazard Mater ; 456: 131617, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224711

RESUMO

To carry out risk assessments of benzophenone-type UV filters (BPs), fast and accurate analytical methods are crucial to determine and monitor levels in the environment. This study presents an LC-MS/MS method that requires minimal sample preparation and yet can identify 10 different BPs in environmental samples such as surface or wastewater resulting in a LOQ range from 2 to 1060 ng/L. The method suitability was tested through environmental monitoring, which showed that, BP-4 is the most abundant derivative found in the surface waters of Germany, India, South Africa and Vietnam. BP-4 levels correlate with the WWTP effluent fraction of the respective river for selected samples in Germany. Peak values of 171 ng/L for 4-hydroxybenzophenone (4-OH-BP), as measured in Vietnamese surface water, already exceed the PNEC value of 80 ng/L, elevating 4-OH-BP to the status of a new pollutant that needs more frequent monitoring. Moreover, this study reveals that during biodegradation of benzophenone in river water, the transformation product 4-OH-BP is formed which contain structural alerts for estrogenic activity. By using yeast-based reporter gene assays, this study provides bio-equivalents of 9 BPs, 4-OH-BP, 2,3,4-tri-OH-BP, 4-cresol and benzoate and complements the existing structure-activities relationships of BPs and their degradation products.


Assuntos
Receptores Androgênicos , Poluentes Químicos da Água , Humanos , Cromatografia Líquida/métodos , Água , Espectrometria de Massas em Tandem/métodos , Estrogênios/análise , Saccharomyces cerevisiae , Benzofenonas/química , Protetores Solares/química , Poluentes Químicos da Água/química
6.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838602

RESUMO

The excessive use of ammonium fertilizer and its associated leakage threatens aquatic environments around the world. With a focus on the treatment of drinking water, the scope of this study was to evaluate and model the breakthrough curves for NH4+ in zeolite-filled, fixed-bed columns. Breakthrough experiments were performed in single- and multi-sorbate systems with the initial K+ and NH4+ concentrations set to 0.7 mmol/L. Breakthrough curves were successfully modeled by applying the linear driving force (LDF) and Thomas models. Batch experiments revealed that a good description of NH4+ sorption was provided by the Freundlich sorption model (R2 = 0.99), while unfavorable sorption was determined for K+ (nF = 2.19). Intraparticle diffusion was identified as the rate limiting step for NH4+ and K+ during breakthrough. Compared to ultrapure water, the use of tap, river, and groundwater matrices decreased the treated bed volumes by between 25% and 69%-as measured at a NH4+ breakthrough level of 50%. The concentrations of K+ and of dissolved organic carbon (DOC) were identified as the main parameters that determine NH4+ sorption in zeolite-filled, fixed-bed columns. Based on our results, the LDF and Thomas models are promising tools to predict the breakthrough curves of NH4+ in zeolite-filled, fixed-bed columns.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Adsorção , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
7.
J Hazard Mater ; 446: 130634, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36599278

RESUMO

Ten common benzophenone-based UV filters (BPs), sharing the same basic structure and differing only in their substituents, were investigated with respect to their primary and ultimate biodegradability. This study was carried out in order to gain deeper insights into the relationship between structure and biodegradability. The primary biodegradation of the selected BPs was studied in river water at environmentally relevant concentrations (1 µg/L) while varying specific, crucial environmental conditions (aerobic, suboxic, supplementation of nutrients). For this purpose, both batch and column degradation tests were performed, which allowed a systematic study of the effects. Subsequently, the ultimate biodegradation, i.e. the potential to achieve full mineralization of BPs, was examined according to OECD guideline 301 F. The results indicate that mineralization is limited to derivatives in which both aromatic rings contain substituents. This hypothesis was supported by docking simulations showing systematic differences in the orientation of BPs within the active site of the cytochrome P450 enzyme. These differences in orientation correspond to the substitution pattern of the BPs. This study provides valuable insights for assessing the environmental hazards of this class of trace organic compounds.


Assuntos
Benzofenonas , Poluentes Químicos da Água , Benzofenonas/química , Biodegradação Ambiental , Água Doce , Poluentes Químicos da Água/análise
8.
Environ Sci Technol ; 57(1): 570-581, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36542499

RESUMO

Heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) are frequently found in the environment yet, compared to homocyclic PAHs, little attention has been paid to their environmental behavior and a comprehensive hazard assessment has not been undertaken. Surprisingly, the physicochemical data necessary to perform at least a screening-level assessment are also limited. To address this, we began by experimentally determining the physicochemical properties of heterocyclic PAHs, namely, water solubility (Sw), n-octanol-water partition coefficients (Kow), and organic carbon-water partition coefficients (Koc). The physicochemical data obtained in this study allowed for the development of clear structure-property relationships and evaluation of the predictive power of in silico models including conductor-like screening model for realistic solvation, the poly-parameter linear solvation energy relationship, and the quantitative structure-property relationship. Finally, heterocyclic and homocyclic PAHs were evaluated in terms of persistence, bioaccumulation, mobility, and toxicity to perform a screening-level comparative hazard assessment by integrating the data and evidence from multiple sources.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Água/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água/toxicidade , Simulação por Computador
9.
J Hazard Mater ; 430: 128453, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739656

RESUMO

Microplastic (MP) pollution has become a global concern in terms of its environmental abundance and potential detrimental effects. Fibrous microplastics (FMPs) released from synthetic textiles are believed to contribute significantly to environmental MP pollution. This review provides an overview of current knowledge relating to the environmental impact of FMPs through a summary and discussion of (1) the concentrations in different environmental compartments including water, soil and air, (2) emission from wastewater treatment plants: via effluent discharges to waters and via sludge to land, (3) environmental transport and fate, and (4) toxicity and associated effects. How the properties of FMPs influence these aspects is discussed and their behaviour is compared to MPs of other shapes. We have summarised the Environmental Concentrations and derived Predicted No-Effect Concentrations for a preliminary risk assessment of FMPs by extrapolating the risk quotient for each respective environmental compartment. The uncertainties surrounding current assessment methods are discussed. In particular we address the need to improve determination of exposure levels and to better characterise the effects of FMPs. We conclude by presenting topics for future studies to address, which will improve our still limited understanding of the interactions between FMPs and the environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Microplásticos/toxicidade , Plásticos/toxicidade , Têxteis , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
J Hazard Mater ; 430: 128495, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739676

RESUMO

Benzophenone-type UV filters (BPs) represent a very diverse group of chemicals that are used across a range of industrial sectors around the world. They are found within different environmental compartments (e.g. surface water, groundwater, wastewater, sediments and biota) at concentrations ranging from ng/L to mg/L. Some are known as endocrine disruptors and are currently within the scope of international regulations. A structural alert for high potential of endocrine disrupting activity was assigned to 11 BP derivatives. Due to the widespread use, distribution and disruptive effects of some BPs, knowledge of their elimination pathways is required. This review demonstrates that biodegradation and photolytic decomposition are the major elimination processes for BP-type UV filters in the environment. Under aerobic conditions, transformation pathways have only been reported for BP, BP-3 and BP-4, which are also the most common derivatives. Primary biodegradation mainly results in the formation of hydroxylated BPs, which exhibit a structure-related increase in endocrine activity when compared to their parent substances. By combining 76 literature-based transformation products (TPs) with in silico results relating to their receptor activity, it is demonstrated that 32 TPs may retain activity and that further knowledge of the degradation of BPs in the environment is needed.


Assuntos
Disruptores Endócrinos , Água Subterrânea , Poluentes Químicos da Água , Benzofenonas , Disruptores Endócrinos/análise , Protetores Solares/análise , Águas Residuárias , Poluentes Químicos da Água/análise
11.
Environ Res ; 212(Pt C): 113438, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35569535

RESUMO

The amount of industrial pollution entering the environment and its impact on living organisms is an ongoing concern. At the same time, due to an increasing awareness, new methods of wastewater treatment are being explored that are not only effective but also environmentally acceptable. Meeting environmental standards for permitted concentrations is a necessity, but investigating the effects of wastewater on living organisms is also an important issue. In this paper, the influence of metal ions (Fe(III), Cr(III), Ni(II), Cu(II)) in industrial wastewater from electropolishing of stainless steel on Daphnia magna has been investigated. Daphnids have been exposed to wastewater both before and after treatment (Ca(OH)2 precipitation, sorption with peat). Immobilisation in a 48-h acute toxicity test and EC50 has been determined. In the case of studied industrial wastewater, the organic content (expressed as total organic carbon) of the effluent has a positive impact in terms of the survival of D. magna and increases the range of heavy metal concentrations tolerated by them. The application of a two-stage process with Ca(OH)2 neutralisation followed by sorption with peat allows for the removal of almost 100% of metal ions from the wastewater. The reduction obtained ensured a limited impact on D. magna and a decrease in immobilisation to less than 10%. Proper execution of the wastewater treatment process ensures a reduction of its negative impact on living organisms.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Daphnia , Compostos Férricos , Metais Pesados/toxicidade , Solo , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade
12.
Environ Sci Pollut Res Int ; 29(18): 26977-26991, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34907475

RESUMO

As the knowledge on the joint effects of pharmaceuticals towards different non-target organisms is still limited, the aim of our study was to evaluate the toxicity of mixtures of pharmaceuticals, as well as their baseline toxicity towards three selected organisms, namely the bioluminescent bacteria Aliivibrio fischeri, the crustacean Daphnia magna, and the duckweed Lemna minor. Different mixtures composed of three up to five pharmaceuticals having the same or different mechanisms of action in terms of their therapeutic activity (non-steroidal anti-inflammatory drugs, opioid analgesic, antibacterial and anti-epileptic drugs) were investigated. The observed EC50s were compared with those predicted using the concentration addition (CA) and independent action (IA) models. In general, the EC50 values for mixtures predicted with the CA model were lower than those obtained with the IA model, although, in some cases, test predictions of these two models were almost identical. Most of the experimentally determined EC50 values for the specific mixtures were slightly higher than those predicted with the CA model; hence, a less than additive effect was noted. Based on the obtained results, it might be concluded that the CA model assumes the worst-case scenario and gives overall closer predictions; therefore, it should be recommended also for modeling the mixture toxicity of pharmaceuticals with different modes of action.


Assuntos
Araceae , Poluentes Químicos da Água , Aliivibrio fischeri , Animais , Daphnia , Preparações Farmacêuticas , Poluentes Químicos da Água/toxicidade
13.
Chem Rev ; 121(21): 13132-13173, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523909

RESUMO

The tailorable and often unique properties of ionic liquids (ILs) drive their implementation into a broad variety of seminal technologies. The modular design of ILs allows in this context a proactive selection of structures that favor environmental sustainability─ideally without compromising their technological performance. To achieve this objective, the whole life cycle must be taken into account and various aspects considered simultaneously. In this review, we discuss how the structural design of ILs affects their environmental impacts throughout all stages of their life cycles and scrutinize the available data in order to point out knowledge gaps that need further research activities. The design of more sustainable ILs starts with the selection of the most beneficial precursors and synthesis routes, takes their technical properties and application specific performance into due account, and considers its environmental fate particularly in terms of their (eco)toxicity, biotic and abiotic degradability, mobility, and bioaccumulation potential. Special emphasis is placed on reported structure-activity relationships and suggested mechanisms on a molecular level that might rationalize the empirically found design criteria.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Relação Estrutura-Atividade
15.
Sci Total Environ ; 786: 147309, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33975102

RESUMO

Interest in ionic liquids (ILs), called green or designer solvents, has been increasing because of their excellent properties such as thermal stability and low vapor pressure; thus, they can replace harmful organic chemicals and help several industrial fields e.g., energy-storage materials production and biomaterial pretreatment. However, the claim that ILs are green solvents should be carefully considered from an environmental perspective. ILs, given their minimal vapor pressure, may not directly cause atmospheric pollution. However, they have the potential to cause adverse effects if leaked into the environment, for instance if they are spilled due to human mistakes or technical errors. To estimate the risks of ILs, numerous ILs have had their toxicity assessed toward several micro- and macro-organisms over the past few decades. Since the toxic effects of ILs depend on the method of estimating toxicity, it is necessary to briefly summarize and comprehensively discuss the biological effects of ILs according to their structure and toxicity testing levels. This can help simplify our understanding of the toxicity of ILs. Therefore, in this review, we discuss the key findings of toxicological information of ILs, collect some toxicity data of ILs to different species, and explain the influence of IL structure on their toxic properties. In the discussion, we estimated two different sensitivity values of toxicity testing levels depending on the experiment condition, which are theoretical magnitudes of the inherent sensitivity of toxicity testing levels in various conditions and their changes in biological response according to the change in IL structure. Finally, some perspectives, future research directions, and limitations to toxicological research of ILs, presented so far, are discussed.


Assuntos
Líquidos Iônicos , Humanos , Líquidos Iônicos/toxicidade , Compostos Orgânicos , Solventes , Testes de Toxicidade , Pressão de Vapor
16.
Sci Total Environ ; 739: 140261, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758962

RESUMO

The accumulation of anthropogenic chemical substances in aquatic organisms is an immensely important issue from the point of view of environmental protection. In the context of the increasing number and variety of compounds that may potentially enter the environment, there is a need for efficient and reliable solutions to assess the risks. However, the classic approach of testing with fish or other animals is not sufficient. Due to very high costs, significant time and labour intensity, as well as ethical concerns, in vivo methods need to be replaced by new laboratory-based tools. So far, many models have been developed to estimate the bioconcentration potential of chemicals. However, most of them are not sufficiently reliable and their predictions are based on limited input data, often obtained with doubtful quality. The octanol-water partition coefficient is still often used as the main laboratory tool for estimating bioconcentration. However, according to current knowledge, this method can lead to very unreliable results, both for neutral species and, above all, for ionic compounds. It is therefore essential to start using new, more advanced and credible solutions on a large scale. Over the last years, many in vitro methods have been newly developed or improved, allowing for a much more adequate estimation of the bioconcentration potential. Therefore, the aim of this work was to review the most recent laboratory methods for assessing the bioconcentration potential and to evaluate their applicability in further research.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água/análise , Animais , Bioacumulação , Peixes , Xenobióticos
17.
Molecules ; 25(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575673

RESUMO

Antibiotic resistance is a growing problem worldwide. The emergence and rapid spread of antibiotic resistance determinants have led to an increasing concern about the potential environmental and public health endangering. Wastewater treatment plants (WWTPs) play an important role in this phenomenon since antibacterial drugs introduced into wastewater can exert a selection pressure on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Therefore, WWTPs are perceived as the main sources of antibiotics, ARB and ARG spread in various environmental components. Furthermore, technological processes used in WWTPs and its exploitation conditions may influence the effectiveness of antibiotic resistance determinants' elimination. The main aim of the present study was to compare the occurrence of selected tetracycline and sulfonamide resistance genes in raw influent and final effluent samples from two WWTPs different in terms of size and applied biological wastewater treatment processes (conventional activated sludge (AS)-based and combining a conventional AS-based method with constructed wetlands (CWs)). All 13 selected ARGs were detected in raw influent and final effluent samples from both WWTPs. Significant ARG enrichment, especially for tet(B, K, L, O) and sulIII genes, was observed in conventional WWTP. The obtained data did not show a clear trend in seasonal fluctuations in the abundance of selected resistance genes in wastewaters.


Assuntos
Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Plantas/genética , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Purificação da Água/métodos , Bactérias/efeitos dos fármacos , Genes Bacterianos/efeitos dos fármacos , Plantas/efeitos dos fármacos , Polônia , Esgotos/análise , Sulfonamidas/farmacologia , Tetraciclina/farmacologia , Áreas Alagadas
18.
Environ Sci Pollut Res Int ; 27(21): 26103-26114, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32358747

RESUMO

The intensive development of medical science has led to an increase in the availability and use of pharmaceutical products. However, nowadays, most of scientific attention has been paid to the native forms of pharmaceuticals, while the transformation products (TPs) of these substances, understood herein as metabolites, degradation products, and selected enantiomers, remain largely unexplored in terms of their characterization, presence, fate and effects within the natural environment. Therefore, the main aim of this study was to evaluate the toxicity of seven native compounds belonging to different therapeutic groups (non-steroidal anti-inflammatory drugs, opioid analgesics, beta-blockers, antibacterial and anti-epileptic drugs), along with the toxicity of their 13 most important TPs. For this purpose, an ecotoxicological test battery, consisting of five organisms of different biological organization was used. The obtained data shows that, in general, the toxicity of TPs to the tested organisms was similar or lower compared to their parent compounds. However, for example, significantly higher toxicity of the R form of ibuprofen to algae and duckweed, as well as a higher toxicity of the R form of naproxen to luminescent bacteria, was observed, proving that the risk associated with the presence of drug TPs in the environment should not be neglected.


Assuntos
Araceae , Poluentes Químicos da Água/análise , Anti-Inflamatórios não Esteroides , Ecotoxicologia , Ibuprofeno , Naproxeno
19.
Sci Total Environ ; 633: 920-928, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29602125

RESUMO

Since estimating the octanol-water partitioning coefficients (log P) of numerous ionic liquids (ILs) is tedious, time & material consuming and labor intensive, predicting by quantitative structure-activity relationship (QSAR) approach is necessary. Although several researchers presented the QSAR models for the property, validation assessment of the models were not sufficiently performed due to lack of log P dataset. In this study, the log P values of external ILs were measured by a shaking-flask method or collected from literatures. The newly obtained external log P values were applied for the validation study of previous models. In results, it was found that previous models showed rather low predictabilities and/or non-ignorable prediction limits to some IL structures whose anions were not involved in the previous studies. Accordingly, to achieve better predictability, the parameters used for previous modeling were re-selected and also their coefficients were re-calculated by multiple linear regression analysis with an inclusion of the external validation set to previous training set. Moreover, for reasonable understanding of chemical meanings in octanol-water partitioning behavior of ILs, we developed a new prediction model with a few number of descriptors, which has a good accuracy of R2 = 0.862 and standard error = 0.564 log units.

20.
Sci Total Environ ; 618: 952-960, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29079087

RESUMO

Sulphonamides (SAs) are one of the most commonly used veterinary drugs and therefore their residues are regularly found in the environment. So far scientific attention has mostly been paid to the evaluation of their acute ecotoxicological effects with data on long-term effects for non-target organisms still largely missing. Therefore, the main aim of this study was to evaluate the potential toxicities of five sulphonamides to duckweed (Lemna minor) after prolonged exposure time (14days). To elucidate whether their phytotoxic effects result from potential photodegradation products, the toxicity of standard solutions of selected sulphonamides was also investigated in a standard 7-day test but after irradiation (by keeping them under the test conditions) for the selected time (after 7 and 14days). The ecotoxicological tests were accompanied by chemical analyses to be able to link the observed effects to the concentrations and nature of the exposed compounds. The results showed a shift in the toxicity of SAs: a strong decrease in toxicity for the two most toxic sulphonamides (sulphamethoxazole and sulphadimethoxine) and a slight increase in toxicity for three other SAs (sulphadimidine, sulphathiazole, sulphamerazine) in the prolonged test. However, a decrease in the toxicity and concentration of all the SAs was observed when stock solutions were irradiated prior to the toxicity experiment, which suggests that the observed effects towards L. minor of five SAs in the prolonged test cannot be directly associated with the degradation of these compounds under the test conditions but with their different mode of toxic action towards these organisms.


Assuntos
Araceae/efeitos dos fármacos , Sulfonamidas/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Resíduos de Drogas/efeitos adversos , Ecotoxicologia , Drogas Veterinárias/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...